
In numerical computation, precision
is both a goal and a challenge. Due
to the finite nature of digital
systems, real numbers are
represented using floating point
arithmetic, a format that inherently
introduces approximation and
rounding errors. This article delves
into the foundations of error
analysis—from the role of machine
epsilon and the dangers of
catastrophic cancellation to
strategies like pairwise summation
and partial pivoting in Gaussian
elimination. Through clear examples
and practical techniques, we
explore how seemingly minor
computational errors can
accumulate, and how careful
algorithm design can significantly
enhance numerical stability and
accuracy.

This system supports a wide range of 
values but inevitably introduces 
rounding errors due to limited precision.

2. Machine Epsilon: Quantifying 
Precision Limits
A fundamental concept in error analysis 
is machine epsilon (ε)—the smallest 
number such that:

1 + ε > 1

in the machine’s floating point system. 

It acts as an upper bound on relative 
rounding error in computations, and is 
essential for evaluating the precision 
and reliability of numerical results.

3. Addition and Subtraction: Precision 
Pitfalls
When adding or subtracting floating 
point numbers with different exponents, 
the smaller number is shifted to align 
exponents—potentially losing 
significant digits due to limited 
precision.

To mitigate this, a guard digit is used. It 
temporarily preserves an extra digit 
during intermediate steps to reduce the 
error. Ultimately, the result is rounded to 
fit the allowed precision.

4. Catastrophic Cancellation: 
Subtracting Dangerously
Catastrophic cancellation occurs when 
subtracting nearly equal numbers. Their 
significant digits cancel, leaving a result 
with poor precision.

For example, computing:

x² − y²
vs.
(x − y)(x + y)
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1. Floating Point Representation: Approximating 
Reality Digitally
Computers cannot store all real numbers exactly. 
Instead, they use floating point representation, a 
finite approximation of the real number set (F ⊆
ℝ). Every number is expressed as:
x = ± m × β^e
Where:
- β is the base (commonly 2 in binary systems),
- t is the precision (number of digits),
- e is the exponent, constrained between emin and 
emax,
- m is the mantissa or significand, where 0 < m < 
β^(t−1).
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Understanding how each intermediate 
term contributes to overall error—
especially with larger matrices—is vital 
for building numerically stable 
algorithms. Techniques like the diver’s 
method (a systematic breakdown of 
computation steps) help track and limit 
such errors.

8. Gaussian Elimination: Solving 
Systems with Care
Gaussian Elimination solves systems of 
linear equations by transforming the 
coefficient matrix into upper triangular 
form using row operations:

a) Row swapping,
b) Scaling a row to make the pivot 
element 1,
c) Row replacement to eliminate entries 
below the pivot.

Once in upper triangular form, the 
system is solved via back-substitution. 
However, the method is sensitive to 
rounding—especially when small pivot 
elements are used.

To reduce numerical error, partial 
pivoting is applied: at each step, the row 
with the largest available coefficient in 
the pivot column is swapped into place.

9. Conclusion: Why Error Analysis 
Matters
Whether you're simulating real-world 
systems, analyzing data, or developing 
numerical algorithms, understanding 
how errors originate and propagate is 
vital. Concepts like machine epsilon, 
catastrophic cancellation, and pairwise 
summation are not just academic—
they’re the tools that make computation 
accurate and trustworthy.

In numerical computing, the goal isn't 
just to compute a number—it's to 
compute the right number. That’s the 
essence of error analysis.

The factored form is more numerically stable, 
especially when x ≈ y, since it avoids subtracting 
similar numbers and reduces error accumulation. 
Each step in a calculation introduces potential 
error, so reformulating expressions thoughtfully is 
crucial.

5. Error Propagation in Summation
When summing a sequence, rounding errors can 
compound at each step. If each operation has a 
small multiplicative error (1 + δ), summing x₁, x₂, 
x₃, ... yields:

((x₁ + x₂)(1 + δ) + x₃)(1 + δ) and so on.

Expanding this shows:
x₁(1 + δ)² + x₂(1 + δ)² + x₃(1 + δ) + ...

This means earlier terms accumulate more error. 
To minimize this, sum smaller numbers first, 
especially when all values are positive—so that 
the larger terms, which carry more weight, are 
affected by fewer compounded errors.

6. Pairwise Summation: Improving Accuracy
Pairwise summation is a recursive method that 
reduces error propagation:

a) Split the list into pairs.
b) Add each pair.
c) Recursively sum the resulting values until one 
result remains.

This forms a balanced binary tree, minimizing the 
number of operations each number undergoes, 
and is significantly more accurate than naive left-
to-right summation.

7. Matrix Multiplication: The Diver’s Perspective
Matrix multiplication involves a complex series of 
arithmetic operations, each prone to rounding 
error. For matrices:

[a b]    [e f]
[c d]    [g h]

The product is:
[ae + bg af + bh]
[ce + dg   cf + dh]
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